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1 Introduction

Applying supervised machine learning requires finding the machine learning algorithm and hyperparameters

that minimize the generalization error for a particular problem. In searching for the optimal machine

learning algorithm and hyperparameter(s), the practitioner typically assumes the data used to train the

model is sampled from the same data generating process. Often, this assumption is justified, particularly

when the practitioner has expertise or intuition about the problem domain. However, with the staggering

growth of data diversity, size, and complexity, a data set may not be governed by a singular underlying

data generating process. Furthermore, modern machine learning libraries create higher-level abstractions,

and fully automated machine learning systems democratize machine learning to non-experts which means

practitioners continually have less information about the specific phenomena they are attempting to model.

In response to this changing landscape, this work conducts an analysis of the importance of the assumption

that a data set is governed by a singular data generating process and proposes a methodology to develop

models that are more robust to heterogeneity in the mapping from feature space to response space. First,

Section 4.1 proposes a more general framing of combined algorithm selection and hyperparameter optimiza-

tion (CASH) as partitioned algorithm selection and hyperparameter optimization (PCASH). Then Sections

5.1 and 5.2 conduct experiments to investigate using clustering to automatically partition data into more

homogeneous subpopulations that are modeled independently. Finally, Section 5.3 evaluates this methodol-

ogy on the Boston Housing data set, and experimental results show using the PCASH formulation achieves a

26% reduction in root mean squared error for a multiple linear regression model compared to the traditional

approach.

2 Background

Section 2.1 details how the standard data generating process is built into supervised machine learning. Section

2.2 connects the concerns of a heterogeneous data generating process to Simpson’s Paradox. Section 2.3

describes the combined algorithm selection and hyperparameter optimization (CASH) problem formulation

that is extended by this work in Section 4.1. Lastly, Section 2.4 offers a basic survey of the unsupervised

learning technique clustering.

2.1 Data Generating Process

Supervised machine learning uses an algorithm to construct a model that predicts the value of a response

variable based on associations with features in the data set. Features X = (X1, ..., Xp) are often referred to
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as independent variables, and the response variable(s) Y is often referred to as the dependent variable(s) in

statistical learning. Good models can be thought of as simplified versions of this unknown data generating

process (Deisenroth et al., 2020). Statistical learning considers an unknown fixed function, f of X. Also,

let ϵ denote a random error term that has mean zero and does not depend upon X. The statistical learning

model is shown in Equation (1) (James et al., 2013).

Y = f(X) + ϵ (1)

The statistical learning model is a rather generic model for the true unknown data generating process.

However, it is often used to implicitly assume f is the same across the entire data set. Since the data

generating process is not observable, it is impossible to verify this assumption directly. Irrespective of the

inherent infeasibility of assessing the data generating process itself, it is conceivable that this data generating

process is heterogeneous within a particular problem domain. It is unclear how different machine learning

algorithms would perform under varying magnitudes of heterogeneity. For example, housing prices could

be collected from Boston, Cambridge, and New York City. Depending on the city where the data was

collected, the association between the characteristics of the houses and the price of the house could differ.

It would then be inappropriate to assume f is the same across the entire data set. In this particular

example, the grouping variable creating heterogeneity or multiplicity in the data generating process is easy

to conceptualize. However, it is possible the grouping variable is a latent variable or is difficult to measure.

2.2 Simpson’s Paradox

The generalization performance of models constructed on different data generating processes is closely tied

to Simpson’s Paradox. Simpson’s Paradox describes where an association between two variables in a pop-

ulation emerges, disappears, or reverses when the population is divided into subpopulations (Sprenger and

Weinberger, 2021; Yule, 1903). Figure 1 shows how this could occur when fitting a linear function to a data

set under two different perspectives. The red line on the left of Figure 1 is a linear fit to the entire data set

and has a negative slope. However, partitioning the population into three subpopulations changes the linear

fit to the same data to have a positive slope for each subpopulation.

It is important to note that Simpson’s Paradox does not constitute a paradox from a mathematical or

probability theoretic perspective (Sprenger and Weinberger, 2021). Rather, it describes the surprising nature

of how different lenses on the same data can produce different conclusions. Nonetheless, for psychological

data, it has been shown that Simpson’s paradox is more common than conventionally thought and typically
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results in incorrect interpretations (Kievit et al., 2013). From the perspective of Simpson’s Paradox, the

problem addressed in this work can be framed as attempting to find subpopulations or grouping variables

that alter interpretations of the data to minimize the generalization error of the model.

Figure 1: Simpson’s Paradox Illustration

2.3 Combined Algorithm Selection and Hyperparameter Optimization (CASH)

To relax the assumption of a single data generating process, Section 4.1 generalizes the problem formulation

offered by combined algorithm selection, and hyperparameter optimization, which is abbreviated CASH

(Thornton et al., 2013). For a given data set, CASH finds the algorithm and set of hyperparameters to

minimize the expected generalization error. The generalization error is estimated by evaluating the model

on the test set, but can be extended to resampling or other forms of estimating the expected value of a model

error over the population.

(a∗, λ∗) ∈ argmina∈A,λ∈Λc(aλ, Dtrain, Dtest) (2)

The formulation for CASH shown in Equation (2) comprises the following terms. Let A = (a1, ..., an) be

all of the potential algorithms under consideration for the particular problem, which is called the algorithm

portfolio. Let λ ∈ Λ denote a particular hyperparameter configuration λ in the set of potential hyperparame-

ters Λ. Therefore, aλ denotes the hyperparameter configuration of a particular algorithm a. Let the data set,

denoted as D, be partitioned into training data Dtrain and testing data Dtest. Lastly, let c(aλ, Dtrain, Dtest)

denote an arbitrary cost metric relevant to that particular problem for aλ trained on Dtrain and evaluated

on data set Dtest. In the context of all of the evaluations used in this work, the cost metric is the root

mean squared error for a continuous response variable. Using these definitions, CASH aims to jointly find

3



the optimal algorithm and its hyperparameter configuration (a∗, λ∗). Jointly optimizing the algorithm and

the hyperparameter configuration is necessary, because the performance of the machine learning algorithm

is conditional on the hyperparameters. For more details, see (Thornton et al., 2013).

2.4 Clustering

This work proposes a solution to heterogeneity in the data generating process by partitioning the data into

potential subpopulations using clustering. Broadly, clustering refers to a collection of methodologies that

group unlabeled data based on measures of similarity (Saxena et al., 2017). This work hypothesizes that more

homogeneous regions of the data will have more similar data generating functions. Under this assumption,

clustering algorithms are a natural candidate for partitioning the data into homogeneous groups to avoid

conducting an exhaustive search over the potential partitions. Clustering methodologies can be split into

partitional and hierarchical clustering (Saxena et al., 2017).

2.4.1 Partitional

In partitional clustering, observations are assigned into k-clusters without hierarchical structure by optimizing

some criterion function (Saxena et al., 2017). Partitional clustering can be further divided to include distance-

based, model-based, and density-based clustering techniques. The only partitional clustering algorithm used

in this work is k-means, which is one of the most popular. The k-means clustering algorithm creates k

centroids and attempts to minimize the within-cluster sum of squares. K-means chooses the initial centroids

randomly and finds local optima highly sensitive to those initial centroids (James et al., 2013). As a result,

it is recommended to use restarts to get different initial configurations or a modified means algorithm like

kmeans++ (Arthur and Vassilvitskii, 2007).

Unlike supervised machine learning, there are no labels to suggest an optimal answer to the correct number

of clusters. The within-cluster sum of squares will always go down by adding another cluster, so the minimal

within-cluster sum of squares is to place every observation in a separate cluster. However, this is not

particularly useful since it reveals nothing about the similarities between the observations. As a result,

there are many approaches to choosing the ideal number of clusters, including using scree plots to look for a

drop-off or elbow in the within-cluster sum of squares, computing the silhouette coefficient, or methodologies

like G-means that attempt to find cluster assignments that are approximately normally distributed (Patel

et al., 2022; Hamerly and Elkan, 2003).
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2.4.2 Hierarchical

The two approaches to hierarchical clustering are agglomerative and divisive (Saxena et al., 2017). Ag-

glomerative hierarchical clustering starts with each observation in a cluster and iteratively combines the

clusters until all data points are in a single cluster. This process forms a dendrogram that can be “cut”

at a particular place to create the cluster assignment. The location of the cut for the dendrogram can be

determined heuristically, but there is no singular correct answer, as is frequently the case in unsupervised

learning. Agglomerative clustering can be seen as the bottom-up approach to hierarchical clustering since

every observation starts in its own cluster. Divisive clustering can be seen as the top-down approach. Di-

visive clustering starts with all of the observations in a single cluster and repeatably splits them into two

clusters, also forming a dendrogram (Saxena et al., 2017).

Hierarchical clustering must also choose the linkage function. Measuring the distance between two observa-

tions is an intuitive notion of distance. However, measuring the distance between two collections of objects

is less clear. A variety of methods, called linkage functions, develop the measure of similarity between two

clusters or collections of observations. The most popular linkage functions include single, complete, and

average linkage, Ward’s method, and the centroid method (Saxena et al., 2017). There is no procedure to

prescribe what linkage function will offer the most informative clusters for a particular problem, but it can

be treated as a tuning parameter.

3 Data - Boston Housing

The Boston housing data set contains information collected by the U.S. Census Service concerning housing

in the area of Boston, Massachusetts (Harrison and Rubinfeld, 1978). This data set was chosen because it is

one of the most popular data sets for regression problems. For some experimental evaluations, the feature

“chas”, an indicator variable for the Charles River, is omitted because clustering algorithms do not always

implement an intuitive notion of distance for categorical variables.

4 Methodology

Section 4.1 proposes a new methodology for addressing heterogeneous data called PCASH. Section 4.2

details experiments investigating generalization errors for models trained on one cluster of observations and

tested on another. These experiments examine the assumption that more homogeneous data regions can be

characterized by more similar data generating functions in terms of generalization error. Section 4.3 details
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experiments modifying data sets to create two underlying distributions. These experiments examine how

different the distributions must be for clustering to generate assignments aligned with each distribution.

Lastly, Section 4.4 details experiments investigating the impact of PCASH using the Boston Housing data

set and the CC18 benchmark.

4.1 Partitoned Combined Algorithm Selection and Hyperparameter Optimiza-

tion (PCASH)

This work proposes a more general form of CASH called partitioned combined algorithm selection and

hyperparameter optimization (PCASH), shown in equation (3). The generalization comes from establishing

m potential partitions of Dtrain called D1, D2, .., Dm meaning Dtrain can be seen as a set of potential training

sets. Each of D1, D2, .., Dm corresponds to a separate CASH problem. Therefore, CASH can be seen as a

special case of this formulation where the training set is all in one partition. The key distinction between

CASH and PCASH is a separate model and hyperparameter configuration from the optimization for each

partition. Therefore, the sum of the cost of each partition is the cost associated with the entire data set.

(a∗,λ∗, p∗) ∈ argmina∈A,λ∈Λ,p∈PΣ
n
i=1(c(aλ, Dtrain, Dtest)|p(Dtest) = i) (3)

PCASH requires introducing an algorithm for partitioning Dtrain. Let this partitioning algorithm be called

p ∈ P where P = (p1, p2, ..., pk) forms a portfolio of potential partitioning algorithms. Like the supervised

learning algorithm, the partitioning algorithm can only be trained or created using information from the

training data. A solution to PCASH now involves finding this partitioning algorithm in addition to the

supervised learning algorithm and hyperparameter configurations for each partition. Therefore, the optimal

algorithm and hyperparameter configurations are sets a∗ = (a∗1, a
∗
2, ..., a

∗
m) and λ∗ = (λ∗

1, λ
∗
2, ..., λ

∗
m) instead

of a singular optimal algorithm and hyperparameter configuration that was denoted as a∗ and λ∗.

The key difference between PCASH and traditional ensembles is that the partitioning algorithm assigns

each test set observation to a particular supervised learning algorithm and then produces a single prediction

rather than aggregating the predictions across all learning algorithms for each observation. This procedure

is laid out in pseudocode in Algorithm (1). Note the error in the algorithm below is divided by the number

of observations to get the mean error.

PCASH can be optimized via the same black box optimization techniques used for normal CASH problems,

including Bayesian optimization, genetic algorithms, random search, or grid search. However, some manual

restricting of the search space will be required in practice. For example, even limiting the formulation to
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Algorithm 1 PCASH Algorithm

1: totalCost← 0

2: totalNumObs← numRow(Dtest)

3: numPartions, pModel← train a partitioning algorithm on Dtrain ▷ Using Clustering

4: i← 1

5: for i ≤ numPartions do

6: Dtrain,i ← get observations from Dtrain in partition i

7: mlModel← train ml algorithm on Dtrain,i

8: Dtest,i ← get observations in i from Dtest assigned using pModel

9: cost← evaluate mlModel on Dtest,i

10: totalCost← totalCost+ cost

11: end for

12: return totalCost/totalNumObs ▷ Returns mean cost

two partitions leads to
(
n
2

)
potential ways to split the data set if using an exhaustive search. A modest data

set of 500 observations would correspond to nearly 250,000 separate CASH problems. While clustering is

used to find partitions, it is foreseeable that more intelligent algorithms could be designed for partitioning

the data into subpopulations. Specifically, there are desirable criteria not naturally optimized in clustering,

like avoiding small clusters where there may not be enough data.

4.2 Model Generalization Between Cluster Assignments

Clustering addresses the infeasibility of searching over all potential subsets of data partitions. If the rela-

tionship between a set of predictors and the response differs across cluster assignments, then models trained

in the absence of that cluster and evaluated on it would perform worse. To investigate this hypothesis, the

observations for the Boston Housing data set were partitioned into folds for cross-validation using k-means

and agglomerative clustering, as well as a random assignment to serve as a control. Under these experiments,

if a model generalizes worse when the cluster assignments are used to determine the folds rather than ran-

dom assignment, then there is evidence the relationship between a set of predictors and the response differs

across cluster assignments. A worse generalization error if the CV folds were determined by clustering is an

indication that the model generalizes poorly from one cluster to another. Conversely, if there is no change

in the distribution of the generalization error between the random fold assignment and the clustered fold

assignment, then this is an indication that the cluster assignment does not alter how the model generalizes.

For example, Figure 2 shows the distribution of the feature “tax” with respect to the response and what fold

it was placed in. The regions where “tax” exceeds 500 are only placed in clusters one and two. However,

random assignment to folds has a representative sample of the high-tax observations in each fold. The cluster
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assignments were created with respect to all of the features, which is why there is not complete separation

when looking only at the tax dimension of feature space and the response.

Figure 2: Distribution of “tax” feature by fold method

It is important to note that confounding effects can influence the generalization error. Therefore, this work

attempts to control as many of these as possible. The variance introduced by the size of the folds and the

functions a machine learning algorithm can characterize are both controlled in the experimental evaluation.

Nonetheless, these experiments are still subject to the limitations of the machine learning algorithms used for

approximating the associations between the feature space and response space. As a result, these experiments

cannot causally assert that more homogeneous regions of the feature space have a similar data generating

function, but only offer evidence this is the case.

The first factor controlled for is poor mean generalization error due to the function families the machine

learning algorithms can approximate. To control for the learning algorithms, the experiments evaluate the

random forest and multiple linear regression algorithms against corresponding control groups. These two

specific machine learning algorithms were chosen because they tend to perform differently from each other

in practice. Nonetheless, it is important to understand and interpret all reported generalization errors as an

artifact of the trained model, which does not inherently imply the same outcome under a different model.

Second, the cluster algorithms produce a varying number of observations assigned to each cluster. To develop

a fair baseline adjusting for variance due to observation imbalance, each CV fold cluster is compared to a

random assignment that mirrors the same imbalance in observations per fold assignment. For example, using

8



the cluster assignments from k-means, fold one may contain 150 observations, and fold two may contain 50

observations. The randomly assigned CV folds that serve as the control for the k-means folds use the

multinomial distribution to assign observations to folds with probabilities reflecting the proportions made

by the cluster assignment. This way, the fold imbalance of the random assignment mirrors the imbalance of

that particular cluster assignment.

Lastly, the final error is calculated using a weighted mean of the root mean squared error (RMSE) across

the folds. For example, if one fold has 50 observations and another has 100 observations, the RMSE value of

the first fold is given half as much weight as the second fold when computing the final performance estimate.

This process amounts to summing the RMSE values and then averaging over the total at the end of the

process. The results are covered in Section 4.

4.3 Evaluation of PCASH With Artificially Heterogeneous Data

The experiments detailed in this section investigate if a data set has two data generating processes, how

different they must be for the clustering algorithms to cluster the data into partitions that align with these

different data generating processes. This approach should offer insight into what conditions will lead to a

cluster assignment that aligns with a difference in underlying distribution.

The experiments randomly split the Boston Housing data set into two subpopulations. Then the features

and response for the first subpopulation were shifted by 0.5 to 3 standard deviations, and the second sub-

population was left unmodified. Then the two subpopulations were placed back into a single data set, and

the k-means clustering algorithm generated two cluster assignments over the feature and response space.

The alignment between the cluster assignment and the artificial distribution shift was then computed by

matching the most aligned counts under each class. For example, if cluster assignment one had a higher count

in subpopulation two than subpopulation one, then cluster assignment one corresponded to subpopulation

two, and cluster assignment two corresponded to subpopulation one.

For the shifted subpopulation, separate experiments were conducted where each feature had between 0.5 and 3

standard deviations of that feature added to each observation in the subpopulation. Since the subpopulations

were generated on a random sample of half of the original population, this shift was not guaranteed to

make all of the observations in one subpopulation distinguishable from another. Experiments were also run

applying the same procedure to six of the twelve features examining how a shift in only a subset of the

features impacts the cluster’s alignment with the artificial subpopulations. Figure 3 shows the unmodified

or original distribution of four features “nox”, “rm”, “indus”, and “crim” in the solid line. Figure 3 shows
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Figure 3: Features Under Varying Distribution Shifts

the distribution of the features after a shift of 0.5 standard deviations in the small dashes and 2 standard

deviations in the long dashes. The results of these experiments can be found in Section 5.2.

4.4 Evaluation of PCASH on Boston Housing Data

The final set of experiments evaluated an implementation of the formulation PCASH from Section 4.1 against

other methods on the Boston Housing data set. Three methods of conducting supervised machine learning

were evaluated. First, a control methodology where a model was trained on the full training set and evaluated

on the test set as is commonly done in practice (method standard). The second methodology was PCASH,

where a cluster assignment is generated and used to partition the data into subpopulations that are modeled

independently (method PCASH). The third methodology used the same clustering assignments as PCASH,

but added them to the data set as an additional feature column (method augment).

The performance of each method was evaluated by creating an 80/20 train-test split. New train-test splits

were generated 100 times to estimate the distribution of performances under a particular method and learning

algorithm. For method augment, and PCASH, the clustering algorithm was run on the training data and

then used to assign the test observations to one of the original clusters. How the test observations were

assigned to a particular cluster at the time of prediction depended on the details of the exact clustering

algorithm. For example, K-means clustering creates centroids that act as the cluster center, and new data

is assigned to the closest centroid. The results of these experiments are in Section 4.

5 Results

Clustering algorithms appear to be suitable tools for partitioning data based on the experimental results in

Sections 5.1 and 5.2. Specifically, Section 5.1 finds models trained on all but one cluster assignment generalize
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worse when evaluating the omitted cluster assignment than a random assignment in some cases. This

indicates the associations between the features and the response learned by the machine learning algorithms

can differ between clusters. Furthermore, Section 5.2 shows that if known heterogeneous subpopulations

are created in the feature space, even over a subset of the features, the clustering algorithms can generate

assignments that align with those subpopulations. Lastly, Section 5.3 shows that the PCASH formulation

improves the generalization performance over both the standard approach and feature augmentation for

multiple linear regression. However, Section 5.3 also finds that PCASH does not improve generalization

performance over the standard approach for the random forest algorithm.

5.1 Model Generalization Between Cluster Assignment

The experimental procedure detailed in Section 4.2 examines the comparative generalization error of models

trained on non-overlapping data regions. In Figure 4, the x-axis is the methodology used to assign obser-

vations to folds. Each methodology is placed next to its corresponding control procedure that reflects the

imbalance in fold size for that cluster assignment in the random assignment. The y-axis is the mean of the

RMSE values across the five folds. The sample mean performance across the 5 folds for each methodology is

in the center of the confidence interval. The same experiments were run for two machine learning algorithms,

multiple linear regression and random forest.

Figure 4: Clustered vs Random Cross Validation

Two formal statistical tests were conducted to determine if the distribution of RMSE between a cluster

assigned folds and the corresponding control differs. The first test is for equal population variances and the

second is for equal population means. Note population in this context does not refer to the full data set,

but the fixed unknowable variance or mean of the RMSE across each fold for a particular method. The null
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hypothesis, shown in Equation (4), is that the population variances are equal. The number of folds, k, for

this test is five as there are five folds for both the control and clustered methods under each experimental

configuration.

H0 : σclust = σcontrol; Ha : σclust ̸= σcontrol (4)

H0 : µclust = µcontrol; Ha : µclust ̸= µcontrol (5)

The two-tailed F-test is used to test for equal population variance because no domain considerations imply a

directionality to the alternative hypothesis (Snedecor, 1989). Welch’s t-test is used to compare the population

means (Welch, 1947). The results of the F-test are used to determine if variances are pooled for the F-

test. Both statistical tests of the population variance and mean were conducted for each of the clustering

methodologies and learning algorithms compared to the respective controls. As a result, a total of four tests

of population variance and four tests of population mean were conducted.

Table 1: Equation (4) Hypothesis Test Results

Across both models and all methodologies, there is evidence of a higher population variance when the cluster

assignment is used for folds instead of random assignment. However, there is insufficient evidence to assert

a difference in population means. The results are shown in Tables 1 and 2.

Table 2: (Equation 5) Hypothesis Test
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An important note is that while Welch’s t-test does not assume equal variance, it does assume normality.

Alternatively, the Wilcoxon Signed-Rank test could have been used to compare population means because

it does not require normality. However, the Wilcoxon Signed-Rank test assumes the differences between

paired samples should be distributed symmetrically around the median with equal population variance

(Montgomery, 2008). There is strong evidence the populations do not have equal variance, shown in table 1,

so Welch’s t-test was used. Lastly, both tests assume independence, but since the models in cross-validation

are constructed with an overlap in training data, a procedure like five by two folds is a better design for

achieving independence for hypothesis testing (Dietterich, 1998; Nadeau and Bengio, 1999). However, the

five by two folds design does not work for the goal of these experiments since clusters correspond to folds,

so it was not used.

Overall, these results show that models evaluated on a cluster assignment not identified in the training have

greater variance than random assignment. To evaluate the efficacy of clustering as a partitioning algorithm,

it primarily matters if a cluster assignment exists with a different relationship between the features and the

response than the rest of the clusters. Under that perspective, this is evidence that such a cluster could

be found since there is a substantive increase in variance. However, there is insufficient evidence to assert

the population mean of the cluster methodology has a higher RMSE than random assignment. This could

indicate that finding the desired cluster assignments may be difficult. This difficulty comes from the notion

that the location of the distribution has not moved, so there may not be a rule that performance gets worse

on average.

5.2 Evaluation of PCASH on Artificial Data

The experiments detailed in Section 4.3 examine how different two distributions must be in feature space

for the cluster assignment created in the partitioning algorithm to align with different processes. Table 3

shows that under sufficiently large shifts in feature space, cluster assignments are aligned with the different

distributions. For a shift of two standard deviations for all of the features or three standard deviations for

half of the features, the alignment is nearly 100%. The k-means clustering algorithm was used for all of the

results shown in Table 3.

Intuitively, the smaller the number of features that are shifted, the more prominent the shift has to be

for the clustering to align with the shift. Furthermore, none of the individual features have to be fully

separated in a singular dimension for clustering to be perfectly aligned. Figure 3 from Section 4.3 shows

the distribution of four of the features after a 2 standard deviation shift. Substantially, more than 0.4% of

the distributions overlap, but the alignment is 99.6%. This is because, across all of the dimensions of the
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Table 3: Accuracy of Cluster Assignment Recovery of Artificial Shift

features, the observations become more separated.

As a result, partitioning data using clustering can recover a difference in the distribution process, given it

exists in the feature space. Furthermore, recovering the different distributions does not require complete

separation in any individual feature, but clustering is not effective for arbitrarily small differences. Clustering

will be more successful if the difference in distribution exists in a higher percentage of the features and is

larger on the scale of each feature based on the results in Table 3.

5.3 Evaluation of PCASH on Boston Housing

The experimental results on the Boston Housing data set show that multiple linear regression has a 21%

lower test set RMSE when the PCASH approach is used in addition to the standard approach to supervised

learning. The PCASH methodology was compared against building a single model on all of the observations

in the training data set (method normal) and adding a new feature with the cluster assignment (method

augmented). However, for the random forest algorithm, the performance does not change under any of the

three methodologies.

Figure 5 shows the distribution of performance for each methodology with respect to each learning algorithm.

Specifically, each point in Figure 5 is the root mean squared error on the test set of a single 80/20 train test

split. One hundred train test splits were conducted for each method to better characterize the full distribution

of performance. To maintain comparability of the results, each methodology and machine learning algorithm

was evaluated on the same 100 train and test splits, producing a total of 600 evaluations conducted for the

full experiment.
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Figure 5: Methodology comparison for 100 resampling iterations

Table 4 shows the sample mean and sample variance RMSE from the same experiments shown visually

in Figure 5. The results in Table 4 were used for the hypothesis tests shown in Equation (6). These

hypotheses were conducted once for the random forest algorithm for each comparison and once for the

multiple linear regression algorithm. The Tukey Honestly significant difference test was used with the

hypotheses in Equation (6) (Tukey, 1949). The null hypothesis asserts that the population mean RMSE for

the control method “augmented” or “normal” is equal to the “partitioned” methodology for that particular

algorithm. The alternative hypothesis asserts a different population mean RMSE.

Table 4: Performance on Boston Housing

The hypothesis test results found only the partitioned methodology to be different from the augmented

and normal methodologies for multiple linear regression with both p-values < 0.0001. The 95% confidence

interval of the true mean difference between partitioned minus normal is (-1.217, -0.799) and partitioned

minus augmented is (-1.22, -0.803). The two tests for random forest had p-values > 0.5 and 95% confidence
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intervals of (-0.239, 0.179) and (-0.300, 0.118). Therefore, there is no evidence of a difference between

population means of the normal approach and the partitioned approach, or the augmented approach and

the partitioned approach for the random forest algorithm.

1)H0 : µpart − µaugment = 0; Ha : µpart − µaugment ̸= 0

2)H0 : µpart − µnormal = 0; Ha : µpart − µnormal ̸= 0 (6)

These results show the implementation of the PCASH formulation using clustering for the partitioning

algorithm lowered the generalization RMSE for the multiple linear regression algorithm. However, it did not

lower the generalization RMSE for the random forest algorithm. Section 5.3.1 investigates why this is the

case.

5.3.1 Analysis of Variable Importance

The previous results raise an ancillary question, why does the partitioned modeling approach lower the

RMSE for the multiple linear regression algorithm, but not the random forest algorithm? To investigate

this question, this section examines the changes in coefficient estimates found in fitting the multiple linear

regression model and the variable importance score depending on the training data.

Table 5 shows that changes in the fitted multiple linear regression model fit on all of the observations, fit on

partition A and fit on partition B. In the table, each row corresponds to one feature in the Boston Housing

data set. Coefficients with NA values were not fit by the model because there was not enough variance in

the feature for that partition.

All three models show major differences in coefficient estimates. Notably, some coefficients become more

predictive of the response when only fit on the data in partition A; conversely, other features become less

predictive. This can be inferred based on the p-value associated with the coefficient, which comes from a

t-test that the population coefficient differs from zero.
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Table 5: Coefficient Change Dependent on Partition Data

One of the most noteworthy changes is that extreme ranges of some features, including “tax” and “rad” are

not present in partition A. Figure 6 shows the partition assignment generated by k-means for the “tax” and

“rad” features. This means the model built on the data in partition A is conditioned on the absence of these

extreme values for these features.

Figure 6: Cluster Assignment Conditions on High Tax

Interestingly, this conditioning on the presence of extreme values for some of the features enabled a higher
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adjusted R-squared value for the model fit on partition A (0.8602) than the model trained on all of the

observations (0.7291) or partition B (0.617). The R-squared value is the variance in the response variable

explained by the fitted multiple linear regression model fit. This better fit led to a lower RMSE on the

test set because three times as many observations in the test set were in partition A. In other words, more

observations were predicted by the better model, lowering generalization error.

Table 6 shows the variable importance score for the random forest algorithm trained on subpopulations A,

B, and the full data set. Notably, all three fitted random forest models result in different variable importance

scores. Specifically, the features “lstat”, “rm”, and “ptratio” experience major swings, especially in partition

B. Despite the differences in the variable importance scores overall, neither achieves lower RMSE on the test

set. This means that while the random forest models changed under the different partitions of data, the

differences in the models did not help reduce generalization error in terms of test set RMSE.

Table 6: Random Forest Variable Importance

Despite the difference in model generalization error between the multiple linear regression and the random

forest models, the important features for the multiple linear regression were similar to those of the random

forest model. The features “rm”, “ptratio”, and “lstat” were the three most important features for the

multiple linear regression model fit on all of the observations and the random forest model fit on all of

the data. This could indicate that the features may not have a linear relationship with the response and
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that, potentially, the performance improvement seen with the random forest algorithm methodology may be

achievable through feature transformations.

6 Further Work

6.1 Partitioning Algorithm

This work uses K-means clustering and agglomerative hierarchical clustering to partition the data. These

methodologies optimize over assigning the most similar observations to the same cluster. This criterion

is related to, but not inherently aligned with, the objectives of PCASH. Developing better criteria for

partitioning data that maximizes the generalization performance of machine learning algorithms trained on

the partitions will likely improve performance. Some potential criteria relevant to the PCASH formulation

but yet to be explored are constructing partitions with enough observations to fit a model that can generalize.

6.2 Experimental Extensions

Another natural extension of this work is to conduct experimental evaluations on more data sets with

additional clustering algorithms and supervised machine learning algorithms. The evaluations were limited

to the random forest and multiple linear regression supervised machine learning algorithms using the Boston

Housing data set and k-means clustering. These represent a small subset of the widely used algorithms and

leave room for substantive improvements with additional investigation. It would particularly be interesting

to evaluate data sets with known useful grouping variables and omit them to see how clustering performs at

recovering this information.

While the formulations articulate the problem in terms of algorithm selection and hyperparameter optimiza-

tion, there were no experimental evaluations conducted inside these broader frameworks. These experiments

should be conducted to determine if performance benefits are maintained even for well-tuned supervised

learning algorithms in a full machine learning pipeline.

7 Code

All code is available at this GitHub repository https://github.com/AustinStephen/StratifiedModeling. The

README details everything required to replicate all of the experimental evaluations. The methods proposed

are wrapped in a function, so they can easily be extended to new data. It also includes all code used for the

hypothesis tests included in Section 5.
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8 Conclusion

It is standard in supervised machine learning to assume a data set has a single underlying data generating

process. In an evaluation of this assumption, this work proposes a methodology where data is partitioned, and

models are fit on individual partitions of the original data. It also formalizes this methodology in the same

terms as the combined algorithm selection and hyperparameter optimization problem naming it PCASH. To

evaluate this methodology, this work then uses clustering as a tool for partitioning data and shows clustering

could be appropriate for developing grouping variables to partition data. Lastly, experimental evidence

shows this methodology lowers test set RMSE for multiple linear regression on the Boston Housing data

set. In future directions, we would like to investigate more sophisticated partitioning methodologies that

can extend this result to more data sets and machine learning models.
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